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Clebsch—Gordan Coefficient for g,s-Deformed Two-
Dimensional Hydrogen Atom

Zhao-xian Yu'? and Ye-hou Liu?
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Utilizing the SU(2),, symmetry of the ¢ s>deformed two>dimensional hydrogen
atom (2DHA), the Clebsch—Gordan coefficient for the ¢,s>deformed 2DHA is
derived in the Bargmann space.

INTRODUCTION

The study of the hydrogen atom has been a tantalizing problem to
scientists for years (Schrodinger, 1926, 1967; Bhaumik et al., 1986; Nandy
et al., 1989; Nauenberg, 1989; Gay et al., 1989; Lena et al., 1991; Gerry
and Kiefer, 1988; Prunele, 1990). Utilizing the SU(2),,s symmetry of the ¢,s»
deformed two>dimensional hydrogen atom (2DHA), we calculate the
Clebsch—Gordan coefficient for the ¢, s>2DHA. First we introduce the Barg»
mann representations in the tensor product space of the irreducible representa>
tions for SU(2),,, and then derive the Bargmann expressions for the bases of
irreps, the coherent state, and the operators. Finally, the Clebsch—Gordan
coefficient is easily obtained.

1. SU2)qs SYMMETRY OF q,ss-DEFORMED 2DHA

The Hamiltonian for a general 2DHA in the centernof>mass frame is

_’2 2
H=-% (1)
2u r

- > >
where U is the reduced mass, r = Jxt+yiand p = pui + Py
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We first define a two>dimensional Lenz vector

- 1
m

- i i - -
:2pe2(p X1 —=1Xp)—e (2

= > > > -
wl_l;ere e, = (xi + yj)/r is the radial unit vector and / = (xp, — yp )k =
Lk is the angular momentum. We have the commutation relations

-
[H, L] =[H m]=0 (3)
and the confinement conditions

-

3 T
=1 -m 4)

3]

If we choose natural units such that 4 = 1, we get easily

—43
z +] = * m+ + -1 = z
[l~= mf] mx, [Wl ,m ] Hez l~ (5)

where m+ = m, *+ im,. Equation (5) denotes that operators /. and m+ cannot
construct a closed Lie algebra. In order to overcome this difficulty, it is
necessary to restrict the energy eigenvalues of the 2DHA to a subspace
spanned by all the degeneracy states with energy range E < 0. Making
the transformations

— 2 _ 2
L=1, J.= \/—“L m., J = \/—“L m- (6)
2F 2F
we have
[J, J«] = £Je,  [Js, J-] = 2J- (7)

Therefore we have a closed Lie algebra.

In consideration of the equivalence between a 2DHA and a two>dimen»
sional isotropic harmonic oscillator with a confinement condition, say, the
2DHA has the SU(2),,, symmetry (Xu, 1991). Here we can naturally generalize
this 2DHA to the ¢,s>deformed case, namely, considering the ¢,s>deformation
of the twordimensional isotropic harmonic oscillator with a confinement
condition. Correspondingly, (7) becomes (Jing, 1993)

LU =+ J% s WL — s = s 220 (8)

where the ¢bracket is defined as [x] = (¢° — ¢ “)/(¢ — ¢ ). For future
convenience, we also define the ¢,s>bracket [x],s = s .
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2. COHERENT STATE OF THE q,s-DEFORMED 2DHA AND THE
BARGMANN REPRESENTATIONS

The unitary irreducible representations of SU(2),, ; can be represented
by the quantum number j (denoted 7Y, where j = 0, 1/2, 1,...). The action
of the SU(2),s generators on the bases |j, m)’ is given by

T limy =N — mlgolj + m + gy iom + 1y )
TC i my =N+ mlli — m+ e [iom — 1y (10)
Ty i, my = mlj, my (11)

The coherent state of the TV irreducible representation for SU(2), is writ>
ten as

27 ] ,
I = it = 5\l — eyl )

with the following definition for the deformed exponential:

n

X 7l:wx——
o = 2 Tl Do -

The normalization coefficient is

[2]]4s!
Z i 7+ mlgst [J — m]q,

4P = (\ 2y (14)

In order to construct the completeness relation of the quantum state b‘z),
we define P, ,-1(j — m, z) to be an observable probability of |j, m)’ in the
state |jz), namely

ok 2/, ,
o = e U = e D

Pyos—1(j —m, z) =
(15)

Letting

%MU—WZJ%WU—m@ﬁ
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and with p representing the density matrix of the state b m)', we have
J

p="3 Puucilj — mlj, my ", m

m=-j
Thus, the completeness relation of bz) can be written as
L p71 md 2 (16)
2 =
T 4

Now we define the Bargmann representation of the bases b m)' for the TV
irreducible representation as follows:

2 q.s -
1) = Gty =\ a9

Defining a state vector in the space of the TV irreducible representation

“J’)’ = ZI: _CA]', m)’, we have

m=-j

(Jz* %

=y Cm(jz*‘.li lj, my’

[2]]4s!
[/ + mlgs! [T — mlgs

= Gy mm L a)

We also have

L Ly G Juy

Z* d *
. [2/](1? sy j—m—1
-yc, ” 19
2 U =M U — iyt &7 (15

From equations (18) and (19), we get the Bargmann representation of operator J,

o L] a4
Bj (J+) - % z* dz* (20)
Similarly, we have
G =D Cu(jz* 2| m)’
[2/]qs!

=3 Culj+ mlyss’™" (G LR}

[j+mlgs! [J—mlgs
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% * d
2y = E] Gy

= Z Colj + m]gus’™ " m[qz/' E] m— (*y ] 22)
GV =3 Col iz Ty
= [2/]4.s! ”
=2 Tt &
G = =) Gy
=2 GmAll Y m[qz;' E] ~aa © 7 (24)

so we can obtain the Bargmann representations of operators of J_ and J,

S dlde d d
1y — *dldz O ¢ P 2N
Bi(JL) =z*s [2] z* 7 *:| , Bi(J)=j —z* i (25)
3. THE TENSOR PRODUCT OF IRREDUCIBLE REPRESENTATIONS

Noticing the operator structures in the reducible space TV,
Ji = J10 & (s 7 gy 4 (sq) 0D R g0 (26)

Jé(j) = Jﬁ.(jl) X 1) + JUD ®Jﬁ.(j2) (27)

where j = b} — jal, i —jz‘ + 1,...,ji + j», we can obtain the Bargmann
representations of operators J: and J%, respectively:

B(JL) = By(J%) X (s 7'9)P20 + (sq) B R B (JL)  (28)
B(J!) = By(J) X B,(I) + Bj, (I) ® B,(J!) (29)

Accordingly to the Baker—Campbell-Hausdorff formula e’Be”™ = B +
[4, B] + (1/2!) [4, [4, B]] + - - - > we can obtain

q*nJ;JL — anL q*n.li.’ Jo an; — qnan;JL
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Accordingly, we have
(1) = (1) R (57" g4 + (sq) D & g1y

-3 F% (sg)! " DT R (57 g) 02!

q.s°

X {(sq) 0 R g (30)

4. THE BARGMANN REPRESENTATIONS FOR IRREDUCIBLE
BASES IN TENSOR PRODUCT SPACE

First we solve the Bargmann representation of the irreducible bases
‘j, jY in the reducible process TV) X TV =% & TV fz1,2) =
(jiz¥, joz ¥ ‘j, ), where ‘jlz?‘,jzzi") = blz H & ‘jzzi‘). For f; (z1, z2) we
have

Bi(J (21, 22) =) Sz, 22) (31)
Bi(J¥)fifz1. ) = 0 (32)

where the sign & in (31) and (32) denotes that the active space is the tensor
product space. From (20) and (25)-(27) the Bargmann representations are
given by

, d d
N I R
B;(J:7) = (Jl Zikdﬁk) + (Jz Zikdzik) (33)
p 1 d _ .7-* * -* *7. 1 d
Bi(J' —_— o — ® 1 P uzd/dzz_i_ zidldz1 —j; ®_ §<— 34
(% ZTK[ZIdsz] o 0 x| TCa (9

Assume that the eigenvalue of (31) is z§"z%"; then we have
Bj(.];’-x) 'z =1 —n)z " 28"+ (o —m)z ¥z 3" = jzt"z 5" (35)

sothatn + m = j, + j» — .
We can introduce a new parameter k, and let k = n + m = j; + j» —
j>where k=0,1,2,...,2min(ji,/2). Accordingly, f; (z1, z2) can be written as

k
£ iz1, 22) = C, z ¥z gk (36)

n=
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Substituting (36) into (32), we have

k k-1
Culn](s gy gz g chn[k—n](sq)"*flz gy k=]

k—1
:;{cn+1[n+1](s*1qyz*k+"+l+cn[k—n](sq)"*f1}zik"zf’f*"*l=0 (37)

where the recurrence formula is given by

[ul 2n+]2 —j—k+1

k—j,—j,—1
[+ 1] ¢ (38)

Cn+1 = _C

Therefore

m[kﬂ'_] sn(j72j1)+ nqu —n(j+1)
—n

so that f; (z1, z2) can be rewritten as

_(__1)n_sn(j*2j1)+n2*1q*n(j+1)Zianj<k*n (40)
= [n]! [k—n]!

= (=D (39)

k
fif(z1,22)=C

where C is the normalization coefficient(the constant [k],,~!! is implied in
C), and can be determined from

. k (_1)n+m
(i i) = C*C Y Z

n()m()[n [m k—n] [k—m]’

X s (m+n)(j— 2]1)+n2+n12 2 —(m+n)(j+1)

M k—m
><_2p1 Py JJ”I Sl SR

11(‘21 )Aj (‘22‘ )
where
b = Z PyoiGir = m)jn, miy' "G, mi 42)
my==j
7
P2 = Z Pygs1(jo — mz)bz, my' '(ja, mz‘ (43)
my=-j2

For convenience, letting C be a real number, we can obtain easily

= [271]gs! [2/2]4.517€ (44)
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with

k .
Q=§ 202D =20 [2/1 — n]gs'[2/r — kK + n](”!

" [n]g.s! [k — nlys

In the following discussion, we solve the Bargmann representations of
Jfim(z1, z2). From (10) we have

Ny [2]]qv' [] - m]q,.\‘7|! b )
T ek

oy
Then

fimzr, 22) = (it z¥, jo 2% |jy m>

]+Wlav . o N
BT — ooy G et o 7>
q.5°* .
]+ m V ’ nr
T B T ) (46)

[2] QV' [] - I’I’l]

where B;((J Xy~ can be determined by equations (25) and (30), i.e.,

j—m
i 1@y/=m I(j—m—1)
Bj((J)] ) zh[qu' []—m—l] (sq)J

X {(Z?‘SZT‘WZT [2/1 — z¥dldz¥]gs )1 (sq)!! 7 m :T"/"ZT)}

° {(s ) D 3 [y — 2y 1} (47)
Substituting equations (40) and (47) into equation (46), we have
fiml21,22)=CsU™mU=N=1 M [1+m as!

’ (215! [j—m]gs"!

A f(—l) (271 =nle) [ a=j+j+n]yy "
IZ’ Nt —j—n e [ J—m—1]gs!

X G, +j*j2*m*1)+n(j*2j1)q 12j—m—1)—n(m+ 1)(Z>{<)I+n(z Ek)jl +jp—m—I—n (48)
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5. CLEBSCH-GORDAN COEFFICIENTS

From (12), we have

27 ]
Gt gt = 3 \/[]+ L oy st ey

[2/]4.! A
_nm \/[J+ g [ — mlge &) @2 (49)

Substituting (48) into (49) we have
(1izt, j2 Zﬂjz) = Q5! qijlj

j—m 1 i)

g lUrHi=i=m=D+n(j =2j)+m(j=jp)
255
X ql(Zj*m*l)*n(m +1)+mj; \/[] _ m]q,.v! / [] _ m]q,s71!
(D" (23 = nlg) (o =+ + nlgy ™"
() D+ g2 = — ol Ugst 17— m = !
X (Z Tk)l+n (Z§<)j1+j2*m*1*n (Z*)j*m (50)

In order to calculate the Clebsch-Gordan coefficient, assume that ji — m; =
n + [; then ¥; ¥, can be replaced by Zml,,“ Z 27 and equation (50) is

rewritten as

(ﬁztjzzi‘b‘m

=C Z Z Z 8m my,m2

m==jm==j1my="j2

X JUn =D =1+ Gy =m )=y =my)+m(=j,)  Jy(m=j)+ Gy =m)) 2=y = my)

q

X\/[j_m]q,-v! 1j—m]gs™!

R (1) (21— ) T T = i ]y T
[n' [+ ja—j—nl [ i —m—nlg! [J—j —matn]g!

X

Xsn(j27j1+"727"717")q"(2j172j72"717"71) X(Z*)j*m(zik)jl —my (Z§<)j2*m2 (51)
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On the other hand, we have
j Y )

(jizt, joz3)j2) = > > (et ki, jomsy (52)

m= 7] my=—j| my=—j2
X (imy, jam b‘,m>’ ", mbz)

where '(jimi, jzmzb, my)' is the Clebsch—Gordan coefficient. For other factors,
we have

(leTk,jzzﬁ“jlml,jzmz Y = (leTk‘jlml Y X (ja Zﬂjz my)’

_ L 211! [272]!

mEhi mStpy \ [+ mules! [/ — mudgs! [z + males! [2 — mags!

X (z¥) () (53)
[2/]4s!
[j+m]ys! [J—m]qs

Substituting equations (51), (53), and (54) into (52), we find the Clebsch—
Gordan coefficient

Gamljz) = ((iz* [y y* = L) (54)

. . . — —1 i(jo—))— 1+ (Gy—m)(G —jr—my) +m(j—j
’lel,]zmzb, MY = Sy A7 $727D T Grmm)G —iymy) 4=y

X qjl(m*j) + Gy—my) (2/—jy—my) [j — m]qul

v \/[i + mly ! [+ mulg! [ — ml ! L2 + moles! [ — moly!
[2/1gs! [J — m] ¢57!!
S G V() T3 P A (T AT o A o P R Bl
= [n] [+ —J =l [ —m = nlgs [J— 0 — ma + nly!

X
X s n(jy=j+ my—m;—n) q n(2jy=2j=2m;—n—1) (55)
A? = [2gs! (222001 + o = 71asC) (56)

comes from equation (44).
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